A Comparison of Offline Evaluations, Online Evaluations, and User Studies in the Context of Research-Paper Recommender Systems
نویسندگان
چکیده
The evaluation of recommender systems is key to the successful application of recommender systems in practice. However, recommender-systems evaluation has received too little attention in the recommender-system community, in particular in the community of research-paper recommender systems. In this paper, we examine and discuss the appropriateness of different evaluation methods, i.e. offline evaluations, online evaluations, and user studies, in the context of research-paper recommender systems. We implemented different content-based filtering approaches in the research-paper recommender system of Docear. The approaches differed by the features to utilize (terms or citations), by user model size, whether stop-words were removed, and several other factors. The evaluations show that results from offline evaluations sometimes contradict results from online evaluations and user studies. We discuss potential reasons for the non-predictive power of offline evaluations, and discuss whether results of offline evaluations might have some inherent value. In the latter case, results of offline evaluations were worth to be published, even if they contradict results of user studies and online evaluations. However, although offline evaluations theoretically might have some inherent value, we conclude that in practice, offline evaluations are probably not suitable to evaluate recommender systems, particularly in the domain of research paper recommendations. We further analyze and discuss the appropriateness of several online evaluation metrics such as click-through rate, linkthrough rate, and cite-through rate.
منابع مشابه
Context-Aware Recommender Systems: A Review of the Structure Research
Recommender systems are a branch of retrieval systems and information matching, which through identifying the interests and requires of the user, help the users achieve the desired information or service through a massive selection of choices. In recent years, the recommender systems apply describing information in the terms of the user, such as location, time, and task, in order to produce re...
متن کاملIncreasing the Accuracy of Recommender Systems Using the Combination of K-Means and Differential Evolution Algorithms
Recommender systems are the systems that try to make recommendations to each user based on performance, personal tastes, user behaviors, and the context that match their personal preferences and help them in the decision-making process. One of the most important subjects regarding these systems is to increase the system accuracy which means how much the recommendations are close to the user int...
متن کاملیک سامانه توصیهگر ترکیبی با استفاده از اعتماد و خوشهبندی دوجهته بهمنظور افزایش کارایی پالایشگروهی
In the present era, the amount of information grows exponentially. So, finding the required information among the mass of information has become a major challenge. The success of e-commerce systems and online business transactions depend greatly on the effective design of products recommender mechanism. Providing high quality recommendations is important for e-commerce systems to assist users i...
متن کاملسیستم پیشنهاد دهنده زمینهآگاه برای انتخاب گوشی تلفن همراه با ترکیب روشهای تصمیمگیری جبرانی و غیرجبرانی
Recommender systems suggest proper items to customers based on their preferences and needs. Needed time to search is reduced and the quality of customer’s choice is increased using recommender systems. The context information like time, location and user behaviors can enhance the quality of recommendations and customer satisfication in such systems. In this paper a context aware recommender sys...
متن کاملHybrid Recommender System Based on Variance Item Rating
K-nearest neighbors (KNN) based recommender systems (KRS) are among the most successful recent available recommender systems. These methods involve in predicting the rating of an item based on the mean of ratings given to similar items, with the similarity defined by considering the mean rating given to each item as its feature. This paper presents a KRS developed by combining the following app...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015